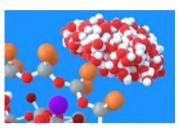


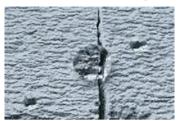
Thüringen | Gymnasium Lehrplanbezüge der CHEM₂DO®-Experimente

Stand: 05/2018


V1 | Wunderwasser (Hydrophobierung eines Gasbetonsteins)

Thema:

Hydrophobierung Dipol-Wechselwirkungen


Animation:

www.chem2do.de
> Lerntools > Hydrophobierung

(Wechselwirkungen, Wasser als Dipol, Silicatstrukturen)

Kontexte / Anwendungen:

Bautenschutz Textilausrüstung Skiwachs

Basiskonzepte aus den Lehrplänen und weitere Schlüsselkonzepte der MINT-Fächer:

- Stoff-Teilchen
- Struktur-Eigenschaft
- Technik
- Nachhaltigkeit

Fachliche Inhalte / Lehrplanbezüge:

Qualifikationsphase:

Klassenstufe 12 - Chemische Bindung und organische Chemie:

Der Schüler kann

- die Merkmale der Metallbindung, der Ionenbindung, der unpolaren und polaren Atombindung, der Van-der-Waals-Kräfte und der Wasserstoffbrückenbindung in einer Übersicht darstellen und an Beispielen erläutern
- den Zusammenhang zwischen chemischer Bindung und Eigenschaften bei Molekülsubstanzen erklären:

Polarität,

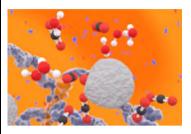
Schmelz- und Siedetemperaturen,

Löslichkeit und Dissoziation

Thüringen | Gymnasium Lehrplanbezüge der CHEM₂DO®-Experimente

Stand: 05/2018

V2 | Rauchzeichen (Brennverhalten von Siliconen und Kunststoffen)


Thema:

Brennverhalten & Thermisches Verhalten von

- Silicon(-öl),
- Paraffinöl
- Kunststoffen
- Gummi

Animation:

www.chem2do.de
> Lerntools > Brennverhalten

(Verbrennung, Gitterstruktur im SiO₂-Korn und im Graphit-Korn)

Kontexte / Anwendungen:

Brandschutzkabel Isolatoren

Basiskonzepte aus den Lehrplänen und weitere Schlüsselkonzepte der MINT-Fächer:

- Struktur-Eigenschaft
- Energie

Fachliche Inhalte / Lehrplanbezüge:

7/8. Klasse:

Stoffumwandlung - Chemische Reaktion

Der Schüler kann

- Verbrennungen als Stoffumwandlung unter Freisetzung von Energie beschreiben,
- einfache Experimente planen, durchfuhren und auswerten sowie die dazu erforderlichen Geräte benennen und sachgerecht handhaben

Klassenstufe 8:

Verbrennung:

Der Schüler kann

- Verbrennungsprozesse als chemische Reaktionen erläutern und für einfache Verbrennungsvorgänge Wortgleichungen formulieren,
- die Reaktion mit Sauerstoff als Oxidation definieren,
- im Schülerexperiment die Bedingungen für das Entstehen eines Feuers überprüfen,
- Maßnahmen des Brandschutzes und der Brandbekämpfung ableiten

Stand: 05/2018

V3 | Reiz des Abbilds (Abformung / Polyaddition)

Thema:

Abformung eines Gegenstands Polyadditionsreaktion Stoff-Eigenschafts-Beziehung

Animation:

www.chem2do.de
> Lerntools > Additionsvernetzung

(Monomer, Polymer, katalysierte Polyadditionsreaktion – auch als einfaches Modell für Sek 1)

Kontexte / Anwendungen:

Backutensilien Rapid Prototyping Abformung in der Kunst

Basiskonzepte aus den Lehrplänen und weitere Schlüsselkonzepte der MINT-Fächer:

- Struktur-Eigenschaft
- Energie

Fachliche Inhalte / Lehrplanbezüge:

Klassenstufe 12 - Natürliche und künstliche Makromolekulare

Struktur und Reaktionen der Kunststoffe

Der Schüler kann

- den Zusammenhang von Struktur und Eigenschaften am Beispiel der Thermoplaste, Duroplaste und Elastomere beschreiben,
- den Zusammenhang von Eigenschaften und Verwendung am Beispiel der Thermoplaste, Duroplaste und Elastomere erläutern,
- die Bildung synthetischer Makromoleküle durch Polymerisation erläutern,
- die Bildung synthetischer Makromoleküle durch Polykondensation erläutern
- die Bildung synthetischer Makromoleküle durch Polyaddition erläutern,
- die radikalische und die elektrophile Polymerisation vergleichen,
- die Reaktionsarten Polymerisation, Polykondensation und Polyaddition vergleichen,
- die prinzipiellen Eigenschaften der Polymerisate, Polykondensate und Polyaddukte aus der Struktur ableiten,
- an einem Beispiel das Prinzip der "maßgeschneiderten Kunststoffe" erläutern,
- die Kenntnisse über Makromoleküle auf Copolymerisate anwenden,
- im Schülerexperiment
 - einen Kunststoff herstellen, z. B.:
 - Eigenschaften von Kunststoffen untersuchen:
 (z.B. Dichte im Vergleich zu Wasser, Verhalten beim Erwärmen,
 Löslichkeit in Wasser und anderen Losungsmitteln,
 Beständigkeit gegenüber Sauren und Laugen)

Stand: 05/2018

V4 | Schaumkiller (Störung von Schaumlamellen)

Thema:

Entschäumer Tenside

Animation:

noch nicht verfügbar

Kontexte / Anwendungen:

Entschäumer in Kosmetika, Medikamenten und industriellen Prozessen

Basiskonzepte aus den Lehrplänen und weitere Schlüsselkonzepte der MINT-Fächer:

- Struktur-Eigenschaft
- Technik

Fachliche Inhalte / Lehrplanbezüge:

Anknüpfungspunkte:

- Seife
- Tensid
- Waschwirkung

Stand: 05/2018

V5 | Hitzetest (Thermische Zersetzung)

Thema:

Thermische Zersetzung von

- Stärke
- Saccharose
- Cyclodextrin

Animation:

www.chem2do.de

> Cyclodextrine (Eigenschaften des Moleküls)

Weitere Animationen in 2019.

Kontexte / Anwendungen:

Pharmazeutische Anwendungen Lebensmittelzusatzstoffe Geruchsneutralisierung Kosmetika

Basiskonzepte aus den Lehrplänen und weitere Schlüsselkonzepte der MINT-Fächer:

- Struktur-Eigenschaft
- Chemische Reaktion

Fachliche Inhalte / Lehrplanbezüge:

7/8. Klasse:

Stoffumwandlung - Chemische Reaktion

Der Schüler kann

- Verbrennungen als Stoffumwandlung unter Freisetzung von Energie beschreiben,
- einfache Experimente planen, durchfuhren und auswerten sowie die dazu erforderlichen Geräte benennen und sachgerecht handhaben

Klassenstufe 8:

Verbrennung:

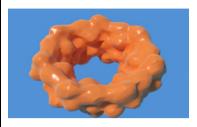
Der Schüler kann

- Verbrennungsprozesse als chemische Reaktionen erläutern und für einfache Verbrennungsvorgänge Wortgleichungen formulieren,
- die Reaktion mit Sauerstoff als Oxidation definieren,
- im Schulerexperiment die Bedingungen für das Entstehen eines Feuers überprüfen, Maßnahmen des Brandschutzes und der Brandbekämpfung ableiten

Stand: 05/2018

V6 | Familienbande (Hydrolyse / Silberspiegelprobe / Fehlingprobe)

Thema:



Hydrolyse von

- Glucose
- Cyclodextrin

(Silberspiegelprobe, Fehlingprobe)

Animation:

www.chem2do.de

> Cyclodextrine (Eigenschaften des Moleküls)

Weitere Animationen in 2019.

Kontexte / Anwendungen:

Pharmazeutische Anwendungen Lebensmittelzusatzstoffe Geruchsneutralisierung Kosmetika

Basiskonzepte aus den Lehrplänen und weitere Schlüsselkonzepte der MINT-Fächer:

- Struktur-Eigenschaft
- Chemische Reaktion

Fachliche Inhalte / Lehrplanbezüge:

Qualifikationsphase:

Natürliche und künstliche Makromolekulare:

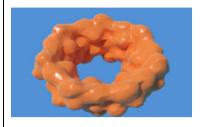
Struktur und Reaktionen der Kohlenhydrate und Proteine

Der Schüler kann:

- Kohlenhydrate in einer Übersicht den Mono-. Di- und Polysacchariden zuordnen:
 - Glucose, Fructose,
 - Maltose, Saccharose,
 - Amylose, Amylopektin, Cellulose,
- die Bildung der Ringformen von α -D-Glucose und β -D-Glucose aus der Kettenform mit Strukturformeln beschreiben,
- die Bildung von Di- und Polysacchariden aus Monosacchariden mit vereinfachten Strukturformeln beschreiben und die Reaktionsart bestimmen,
- die reduzierende Wirkung von Glucose und Maltose erklären,
- den Zusammenhang zwischen Struktur und Eigenschaften am Beispiel der Polysaccharide erläutern,
- die Bedeutung von Kohlenhydraten in Natur und Technik an zwei Beispielen erläutern:
 - industrielle Zuckerherstellung aus Zuckerüben oder Zuckerrohr,
 - Zucker und Zuckeraustauschstoffe in Lebensmitteln,
 - Herstellung und Verwendung von Cellulosederivaten,
- Glucose, Maltose und Saccharose auf reduzierende Wirkung untersuchen,
- Löslichkeit der Polysaccharide vergleichen,
- Stärkenachweis durchfuhren,
 - → Die Inhalte "D-Glucose" und "glykosidische Bindung" können Sie mit folgender Animation veranschaulichen:

www.chem2do.de > Cyclodextrine > Animation "Struktur und Eigenschaften des Moleküls"

Stand: 05/2018


V7 | Dufterlebnis (Binden von Geruchsstoffen)

Thema:

Wirt-Gast-Komplexbildung Chemisches Gleichgewicht Bindung von Geruchsstoffen

Animation:

www.chem2do.deCyclodextrine(Eigenschaften des Moleküls)

Weitere Animationen in 2019.

Kontexte / Anwendungen:

Pharmazeutische Anwendungen Lebensmittelzusatzstoffe Geruchsneutralisierung Kosmetika

Basiskonzepte aus den Lehrplänen und weitere Schlüsselkonzepte der MINT-Fächer:

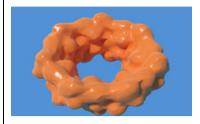
- Struktur-Eigenschaft
- Chemische Reaktion

Fachliche Inhalte / Lehrplanbezüge:

Anknüpfungspunkte:

- Wirt-Gast-Komplexbildung Bildung der Ringformen von α-D-Glucose und β-D-Glucose aus der Kettenform (Strukturformeln)

Stand: 05/2018


V8 | Versteckspiel (Wirt-Gast-Komplexbildung)

Thema:

Wirt-Gast-Komplexbildung Chemisches Gleichgewicht Farbstoffe

Animation:

www.chem2do.deCyclodextrine (Eigenschaften des Moleküls)

Weitere Animationen in 2019.

Kontexte / Anwendungen:

Pharmazeutische Anwendungen Lebensmittelzusatzstoffe Geruchsneutralisierung Kosmetika

Basiskonzepte aus den Lehrplänen und weitere Schlüsselkonzepte der MINT-Fächer:

- Struktur-Eigenschaft
- Chemische Reaktion

Fachliche Inhalte / Lehrplanbezüge:

Anknüpfungspunkte:

- Indikator
- Säure / Lauge